Table 4(a). Bond lengths and other interatomic distances with their standard deviations
$N(0)$ is the nitrogen atom in an adjacent molecule bonded to $\mathrm{O}(1)$ by $\mathrm{H}(0)$.

	Length	e.s.d.
$\mathrm{O}(1)-\mathrm{C}(6)$	$1.31 \AA$	$0.01 \AA$
$\mathrm{O}(2)-\mathrm{C}(6)$	1.21	0.01
$\mathrm{C}(6)-\mathrm{C}(5)$	1.54	0.01
$\mathrm{C}(5)-\mathrm{C}(4)$	1.53	0.01
$\mathrm{C}(4)-\mathrm{C}(3)$	1.50	0.01
$\mathrm{C}(3)-\mathrm{N}$	1.51	0.01
$\mathrm{~N}-\mathrm{C}(2)$	1.49	0.01
$\mathrm{C}(2)-\mathrm{C}\left(1^{\prime}\right)$	1.51	0.01
$\mathrm{~N}-\mathrm{C}(1)$	1.47	0.01
$\mathrm{C}(1)-\mathrm{C}\left(\mathbf{2}^{\prime}\right)$	1.51	0.01
$\mathrm{O}(1)-\mathrm{N}(0)$	2.60	0.01
$\mathrm{O}(1)-\mathrm{H}(0)$	1.52	
$\mathrm{H}(0)-\mathrm{N}(0)$	1.11	

Table 4(b). Bond angles with their standard deviations

Angle	Value	e.s.d.
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{O}(2)$	125°	1°
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(5)$	122	1
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	113	1
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	113	1
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	110	1
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}$	112	1

Table $4(b)$ (cont.)		
Angle	Value	e.s.d.
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(1)$	110	1
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(1)$	114	1
$\mathrm{~N}-\mathrm{C}(2)-\mathrm{C}\left(1^{\prime}\right)$	110	1
$\mathrm{~N}-\mathrm{C}(1)-\mathrm{C}\left(2^{\prime}\right)$	111	1
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{N}(0)$	111	1
$\mathrm{C}(6)-\mathrm{O}(1)-\mathrm{H}(0)$	105	
$\mathrm{O}(1)-\mathrm{H}(0)-\mathrm{N}(0)$	163	
$\mathrm{C}(3)-\mathrm{N}-\mathrm{C}(2)$	107	1
References		

Broomhead, J. M. (1951). Acta Cryst. 4, 92.
Cruickshank, D. W. J. (1962). I.U.Cr. World List of Crystallographic Computer Programs. First Ed. p. 21.
Donohue, J. (1952). J. Phys. Chem. 56, 502.
Dyer, H. B. (1951). Acta Cryst. 4, 42.
Grant, D. F., Hine, R. \& Richards, J. P. G. (1960). Acta Cryst. 13, 996.
Hirokawa, S. (1955). Acta Cryst. 8, 637.
Mathieson, A. McL. (1953). Acta Cryst. 6, 399.
Pimentel, G. C. \& McClellan, A. L. (1960). The Hydrogen Bond. London: Freeman.
Potter, R. (1962). Nature, Lond. 193, 673.
Stace, B. C. (1962). Private communication.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.

Acta Cryst. (1966). 20, 59

The Crystal Structure of a Sodium Molybdenum Bronze

By N.C.Stephenson
Chemistry Department, University of New South Wales, Sydney, Australia

(Received 11 December 1964 and in revised form 20 May 1965)

Abstract

The sodium molybdenum bronze of reported composition $\mathrm{Na}_{0} \cdot{ }_{9} \mathrm{Mo}_{6} \mathrm{O}_{17}$ has a monoclinic structure with space group $C 2 / m, C 2$ or $C m$, and cell dimensions $a=9 \cdot 57, b=5 \cdot 50, c=12 \cdot 95 \AA, \beta=90^{\circ}$; and two formula units per unit cell. Crystals are always repeatedly twinned about the normals to (310) and (310), and the composite reciprocal lattice has trigonal symmetry $P \overline{3} m 1$. The corresponding 'average structure', representing a disordered superposition of various domain arrangements, was solved by three-dimensional Patterson methods, and refined by differential Fourier techniques. It is a trigonally distorted perovskite structure, in which the sodium ions are ordered in one sixth of the voids left between the MoO_{6} octahedra; and it requires either a ratio $\mathrm{Mo}: \mathrm{O}=0: 18$ or randomness in the distribution of 17 oxygen atoms over 18 sites. The further distortion of the true structure to monoclinic, though not fully soluble, is consistent with the ordered distribution of 34 oxygen atoms in the unit cell. The detailed environments of the atoms are discussed.

Introduction

A recent report by Wold, Kunnmann, Arnott \& Ferretti (1964) describes what is probably the first synthesis of alkali-metal molybdenum bronzes. The success of this preparation is dependent upon both the reduction temperature and the molar ratio of alkali-metal molybdate to molybdic anhydride. The reduction was carried out at a platinum cathode in a melt of the above components.

The structures of the potassium molybdenum bronzes have been described (Graham, Stephenson, Wads-
ley \& Wold, 1965). The present work concerns a sodium molybdenum bronze reported by Wold et al. to be within the composition range $\mathrm{Na}_{0.93} \mathrm{Mo}_{5 \cdot 9} \mathrm{O}_{17}$ to $\mathrm{Na}_{0.87} \mathrm{Mo}_{5.95} \mathrm{O}_{17}$ and thus to approach the composition $\mathrm{NaMo}_{6} \mathrm{O}_{17}$; a three-dimensional structure analysis has been made.

Determination of the unit cell and twin relationships

Crystals of the sodium molybdenum bronze, which were apparently single, invariably gave Weissenberg photographs indicating twinning, as shown by the fact
that at Bragg angles greater than 40° all spots other than 001 began to appear as doublets; the 001 spots were always sharp. If these spot splittings were ignored, the reflexions could be indexed by using a hexagonal lattice with cell dimensions $a=5.51, c=12.95 \AA$. The splittings can be explained by the assumption that the true lattice is orthogonal, C-face-centred, with spacings d_{200} and d_{110} nearly equal, (actually $d_{110} / d_{200}=0.997$), and that repeated twinning occurs with the normals to (310) and ($3 \overline{1} 0$) as twin axes. The overlapping reflexions of two components 1 and 2 are related by the index transform:

The intensities associated with the composite reciprocal lattice show the Laue symmetry $\overline{3} m$. This means that the individual components cannot have higher symmetry than $C 2 / m$ (in spite of the 90° angle). This can be seen from Fig. 1, where the symmetry elements are depicted for two orientations of a monoclinic lattice with identical d_{200} and d_{110} spacings twinned about the normal to (310). A limit of 0.25° can be set to the possible departure of β from 90°. This limit is based upon the very small horizontal splitting observed for $h h . l$ type reflexions recorded on Weissenberg photographs.

The pseudo-hexagonal nature of the lattice is evident from powder data. Photographs taken with a Guiniertype focusing camera showed broadening and eventual splitting of lines other than 001, which were sharp. This observation was also made by Wold (1964). The splittings could be indexed on the assumption of a monoclinic lattice whose approximate unit-cell dimensions were calculated from the dimensions of the trigonal cell. The latter values were obtained earlier, as a first approximation, from the composite reciprocal lattice. The exact dimensions of the monoclinic cell were obtained by a least-squares treatment of the powder data, and these values are given in Table 1, where the dimensions of the trigonal average cell are also given for comparison. Since, according to Wold, the empirical formula of the bronze approaches $\mathrm{NaMo}_{6} \mathrm{O}_{7}$, there is one formula unit per trigonal cell, or two per monoclinic cell.

Table 1. Crystal data

$\mathrm{Na}_{0.93} \mathrm{Mo}_{6} \mathrm{O}_{17}$. Deep purple plates elongated along [010]. Monoclinic unit cell of true structure:

$$
\begin{aligned}
a & =9.57, b=5 \cdot 50, c=12.95 \AA, \beta=90^{\circ} \\
U & =684 \AA \AA^{3}, D_{m}=4 \cdot 17, D x=4.26 \mathrm{~g} . \mathrm{cm}^{-3} \\
Z & =2, \text { Space group } C 2 / m, C 2 \text { or } C m
\end{aligned}
$$

Hexagonal unit cell of 'average structure':

$$
\begin{aligned}
& a=5 \cdot 51, c=12.95 \AA, \gamma=120^{\circ} \\
& U=342 \AA^{3}, Z=1
\end{aligned}
$$

Space group P $\overline{3} m 1, P 321$ or $P 3 m 1$.
(All cell dimensions accurate to 0.5%).

An examination of the single crystals using transmission optics was not possible owing to their intense colour and opacity. Petrographic methods utilizing polished specimens and reflexion microscopy revealed the presence of twinned domains, each approximately twelve microns across. It was not possible to tell whether each 'domain' was a true single (monoclinic) crystal or was itself pseudo-trigonally twinned but in a different optic orientation to its neighbour.

There appears to be a close similarity between this domain structure and that of the bronze of composition $\mathrm{Na}_{0.75} \mathrm{WO}_{3}$ which was examined by Atoji \& Rundle (1960). Although the latter appeared to be cubic, the structure was actually tetragonal with c / a very close to 1 : an apparently single crystal consisted of domains oriented in all three pseudo-cubic directions without any preferred distribution, so that the average structure over the crystal could be considered as isometric.

When crystals are twinned, the information gained from the intensity data is of limited value. Sometimes it is possible to isolate an untwinned fragment, e.g. NaNbO_{3} (Wells \& Megaw, 1961) or one twin can be ground from the twin plane, e.g. GdFeO_{3} (Geller, 1956). Unfortunately, it appears practically impossible to obtain an untwinned fragment of the sodium molybdenum bronze, and the establishment of a relationship between the structure of the true monoclinic phase and the averaged trigonal phase seemed, at first sight, remote. An encouraging feature emerged when it was observed that those members of the doublets which

Fig.1. Relationship of twinned monoclinic C-face-centred structure and trigonal structure, showing symmetry elements. $A B C D$, first orientation of monoclinic unit cell; $A B^{\prime} C D^{\prime}$, second orientation of monoclinic unit cell produced by twinning about $A C$, the (310) normal of the first ; $A B^{\prime} E D$, trigonal unit cell. (The third monoclinic orientation $B^{\prime} B D^{\prime} D$, produced by twinning about $B D$, the (3I0) normal of the first, has been omitted for clarity except where it overlaps with the trigonal unit cell). The monoclinic β is 90°, and the c axis of both structures is normal to the paper.
are resolved have practically identical intensities. The true monoclinic cell thus has pseudo-trigonal symmetry, and the average structure should bear a close relationship to the true structure.

In the following discussion the average or statistical structure is first determined for the trigonal unit cell. (The intensities of doublet members of the composite reciprocal lattice were added together when spot splitting occurred.) This is followed by an attempt to define the structure of the monoclinic phase.

The determination of the statistical structure

The X-ray data were collected from one crystal which was approximately $0.25 \times 0.05 \times 0.04 \mathrm{~mm}$ in dimensions and elongated in the [010] direction.

Intensity data for the reciprocal lattice layers $k=$ $0,1,2-5$ were recorded on multifilms with the equiinclination Weissenberg technique. Data were collected over the whole sphere of $\mathrm{Cu} K \alpha$, and intensities were estimated by eye against a standard scale prepared in the usual manner. Data reduction was effected by the ancillary programme for UTECOM (a DEUCE electronic digital computer) written by Sime (1961). The twofold axes and mirror planes relating rows of weighted reciprocal-lattice points by symmetry enabled many correlations to be made between different layers of the above intensity set. The interlayer scaling factors were then determined by the least-squares method of Dickerson (1959) and Rollett \& Sparks (1960). The percentage standard deviation from the mean of scaled structure amplitudes of symmetry-related reflexions was approximately 8%.

There are no systematic absences in spectra (though there are systematic weaknesses mentioned later) and the possible space groups for the trigonal cell are $P \overline{3} m 1, P 32 \overline{1}$ and $P 3 m 1$. The last space group is unlikely since the atoms in point positions $3(d)$ or $6(e)$ have the same z coordinates and are, therefore, arranged in planes parallel to (001). This situation is rendered impossible by the magnitude of a.

A three-dimensional Patterson synthesis clearly indicated that the six molybdenum atoms occupied positions $2(c)$ and $2(d)$ of either of the space groups $P \overline{3} m 1$ or $P 32 \overline{1}$. Phase angles of zero or π radians could be assigned to the observed data on the basis of the Mo contributions to the structure amplitudes, since no matter which space group is chosen, the Mo atoms
have a centrosymmetric distribution with respect to the crystallographic axes. The resulting three-dimensional Fourier synthesis enabled the sodium atom to be placed in position $1(b)$ of either space-group, and the presence of peaks attributable to oxygen in the special positions $3(e)$ and $3(f)$ of space group $P \overline{3} m 1$ suggested that this space group was correct. An analysis of intensity statistics, with the use of the full three-dimensional data, also favoured the centrosymmetric space-group $P \overline{3} m 1$.

One can see from the list of observed reflexion amplitudes (Table 6) that the strong reflexions obey the relation $l=2 n, h-k+\frac{1}{2}=3 m$, at least for l small. The first condition means that the upper half of the cell is approximately the same as the lower; the second means that the molybdenum atoms are approximately in rhombohedral array, though with vertical displacements from the ideal positions which become important as l increases. This approximation to a rhombohedral array strongly suggests a relationship between the ideal perovskite structure and that of the sodium molybdenum bronze.

The coordinates of oxygen atoms in six-fold positions $6(i)$ of space-group $P \overline{3} m 1$ were determined from further three-dimensional Fourier and difference Fourier syntheses. There are thus a total of 18 oxygen atoms in the unit cell, one more than the number arrived at by Wold on the basis of analytical figures. A randomness in the distribution of 17 oxygen atoms over 18 sites is therefore required, although a satisfactory agreement between observed and calculated peak heights (Table 2) was obtained by assuming full occupancy of the eighteen oxygen sites. This point will be discussed in detail at a later stage.

The positional coordinates and isotropic thermal parameters of atoms in the unit cell were refined by successive cycles of structure factors and differential syntheses. The scattering curves of Freeman (1962) for Na^{+}and O^{-}, and Thomas-Fermi for Mo were obtained from International Tables for X-ray Crystallography, and a correction for the real component of the anomalous dispersion of $\mathrm{Cu} K \alpha$ by molybdenum was made with the f^{\prime} values given by Dauben \& Templeton (1955). The estimated standard deviations in atomic positional parameters were calculated according to Cruickshank (1949). All calculations were carried out on a DEUCE machine with the programs of Rollett (1961) and Sime (1961). Refinement was continued un-

Table 2. Atomic parameters for the sodium molybdenum bronze Space group $P \overline{3} m 1$

	Point	Peak heights	(e. \AA^{-3})	Fractional coordinates			Standard deviations (\AA)			
Atom	position	$\varrho(0)$	$\varrho(c)$	x / a	y / b	z / c	(x / a)	(y / b)	(z/c)	$B\left(\AA^{2}\right)$
Na	1 (b)	$12 \cdot 2$	12.4	zero	zero	$0 \cdot 5000$	0.0093	0.0120	0.0201	$2 \cdot 46$
Mo(1)	2(d)	121.7	127.4	$\frac{1}{3}$	$\frac{2}{3}$	$0 \cdot 3883$	$0 \cdot 0013$	0.0010	$0 \cdot 0011$	$1 \cdot 89$
$\mathrm{Mo}(2)$	2(d)	$107 \cdot 0$	112.9	$\frac{1}{3}$	$\frac{2}{3}$	0.9245	$0 \cdot 0014$	0.0012	$0 \cdot 0013$	$2 \cdot 54$
$\mathrm{Mo}(3)$	2(c)	$101 \cdot 1$	$105 \cdot 9$	zero	zero	$0 \cdot 2327$	0.0016	0.0012	0.0014	$2 \cdot 87$
$\mathrm{O}(1)$	6 (i)	$10 \cdot 3$	$12 \cdot 8$	$0 \cdot 1350$	$0 \cdot 8650$	$0 \cdot 3558$	$0 \cdot 02$	0.03	$0 \cdot 02$	$2 \cdot 95$
$\mathrm{O}(2)$	6 (i)	$10 \cdot 3$	$10 \cdot 5$	$0 \cdot 1891$	0.8109	$0 \cdot 8121$	0.02	0.02	0.02	$3 \cdot 28$
$\mathrm{O}(3)$	$3(f)$	17.9	$17 \cdot 2$	$0 \cdot 5000$	zero	$0 \cdot 5000$	$0 \cdot 02$	0.02	0.02	$2 \cdot 95$
										$1 \cdot 56$

til the final shifts were less than the standard deviations in parameters.

During the refinement it was necessary to reduce the occupancy factor of the sodium site $1(b)$ from 93% to 60% in order to obtain a satisfactory agreement between observed and calculated peak heights. At first sight this seems to be in agreement with a higher oxygen content, since low figures for oxygen percentage composition would arise if the sodium content had been overestimated. However, there are five other positions within the unit cell which offer the same stereochemical environment to the sodium atom as it enjoys in space-group position $1(b)$. On the other hand, threedimensional difference Fourier sections subsequently failed to reveal sodium atoms in any of these sites; an observation not surprising since the remaining 0.33 Na^{+}distributed over five sites would hardly be detectable with a standard deviation in $\varrho(\mathrm{obs})$ of $1.0 \mathrm{e} . \mathrm{A}^{-3}$.

The final atomic parameters and their standard deviations are listed in Table 2. These parameters were used to calculate the final set of structure factors which are listed for comparison with F (obs.) in Table 6. There are many instances in which F (calc.) is much greater than F (obs.) and this is considered to be due to extinction. Such reflexions are marked with an asterisk. The overall R index using the observed reflexions and omitting those marked with an asterisk is $0 \cdot 16$. The temperature factors are surprisingly high, in particular for molybdenum. This is probably to be explained as an artefact of the averaging process since each peak in the Fourier map is a composite peak from the addition of three superposed single structures (blurred, perhaps, by distortions in twin boundary regions). Reliance on interatomic distances to an accuracy of better than $\left(B / 8 \pi^{2}\right)^{\frac{1}{2}}$ cannot be claimed, and standard deviations listed in Table 2 are probably very much underestimated.

Description and discussion of the average structure

The sodium molybdenum bronze has a distorted perovskite structure. The ideal perovskite structure for compounds of the type ABO_{3} is cubic with octahedrally coordinated B cations, all octahedra identical and parallel and sharing corners with 12 -coordinated A cations in the cages. The ideal structure might alternatively be described in terms of a rhombohedral lattice with a
special value of 90° for the interaxial angle. Using hexagonal axes, one can give a matrix for transforming all edges and indices: $\left.c_{H}=\right\rceil^{\prime} 3 a_{0}, a_{H}=1 / 2 a_{0}$, where a_{0} is the cubic cell edge.

For comparison with the bronze, the ideal structure (1) can be described in terms of a unit cell (2) with $c=2\rceil / 3 a_{0}, a=l^{\prime} 2 a_{0}$. The rhombohedral and hexagonal axes are oriented in the reverse setting, and the appropriate transformation matrix for direct lattice vectors and plane indices is

The resemblance between the ideal and actual cell dimensions and parameters is shown in Table 3, whilst a diagram (Fig. 2) giving projections of the ideal and actual structures on 0001 further illustrates the nature of the distortion.

The sodium ions are not statistically distributed over all available cage sites (empty sites are listed in Table 3), but are ordered at various levels. Parallel to [42 $\overline{1}$] every sixth cage is occupied by the interstitial cation

Fig. 2. Projections of the ideal and average structure on (0001). The directions and magnitudes of the deviations of oxygen atoms from the ideal positions are shown by arrows. The upper half of the cell has been omitted, and figures give approximate heights of atoms above (0001) in twelfths of c_{H}.

Table 3. A comparison between ideal and actual cell dimensions and parameters for the 'average' structure'

		Actual	Ideal
Cell edge $a(\AA)$		$5 \cdot 51$	$5.40\left(=1 / 2 a_{0}\right)$
Cell edge c (\AA)		12.95	$13 \cdot 22\left(=2 \sqrt{ } 3 a_{0}\right)$
Cell contents		$\mathrm{Na}_{0.9} \mathrm{Mo}_{6} \mathrm{O}_{17}$	$\mathrm{Na}_{6} \mathrm{Mo}_{6} \mathrm{O}_{18}$
Fractional atomic parameters	Na	0, $0, \frac{1}{2}$	$0,0, \frac{1}{2}$
	Mo(1)	$\frac{1}{3} \frac{2}{3} 0.3883$	$\frac{1}{3}, \frac{2}{3}, 0.4166$
	Mo(2)	$\frac{1}{3} \frac{2}{3} 00.9245$	$\frac{1}{3}, \frac{2}{3}, 0.9167$
	$\mathrm{Mo}(3)$	$\begin{array}{llll}0 & 0 & 0.2327\end{array}$	$0,0,0.2500$
	$\mathrm{O}(1)$	$\begin{array}{lllllllllll}0.1350 & 0.8650 & 0.3558\end{array}$	$0.1667,0.8333,0.3333$
	$\mathrm{O}(2)$	$\begin{array}{llllllllllllll}0.1891 & 0.8109 & 0.814\end{array}$	$0.1667,0.8333,0.8333$
	$\mathrm{O}(3)$	${ }^{\frac{1}{2}} 00 \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$
	$\mathrm{O}(4)$	$\frac{1}{2} 00$	$\frac{1}{2}, 0,0$
	Na	vacant	000, $\frac{1}{3} \frac{2}{3}, \frac{1}{3} \frac{1}{6}, 2 \frac{21}{3} \frac{1}{3}, 2 \frac{21}{3} \frac{5}{6}$

whilst in each sheet parallel to (10 $\overline{2}$) every sixth row of cages parallel to [010] is filled. Each sodium ion is surrounded by twelve oxygen atoms in the manner shown in Fig. 3. The approach distances ($2 \cdot 27-2 \cdot 76 \AA$, e.s.d. $0.03 \AA$) indicate normal ionic interaction [2.25$2.78(\pm 5)$ according to the tabulation of Ondik \& Smith (1962)].

There are three different types of octahedra centred on the three crystallographically distinct molybdenum atoms. Bond distances and angles for each type of octahedron are given in Table 4. The Mo-O bond distances vary between 1.87 and $2.15 \AA$ (e.s.d. $0.02 \AA$) and variations of these magnitudes are observed in similar metal-oxygen bond distances in distorted perovskite structures such as tetragonal barium titanate (Megaw, 1957a). The distortion is an example of the 'offcentre effect' (Megaw, 1957b) - the displacement of the small molybdenum atom within its octahedron of oxygen atoms. The off-centre displacements occur towards the mid-point of a face, i.e. a three-corner displacement, and the magnitude of the displacement varies from 0.10 to $0.37 \AA$. Displacements of similar magnitude occur in the sodium, potassium and cadmium niobates - although the direction of the displacements may be towards the mid-point of an edge or towards the corner of an octahedron. The displacements are small when compared with topologically different oxides - undoubtedly because of the fairly homogeneous distribution of positive molybdenum ions throughout the crystal. In compounds such as $\mathrm{K}_{x} \mathrm{MoO}_{3}$ (Stephenson \& Wadsley, 1965) and MoO_{3} (Kihlborg, 1963a) where molybdenum-oxygen octahedra are sharing edges, as well as corners, to form infinite sheets, the coulombic repulsion experienced by the metal cations
is quite asymmetric, and considerable variation in the metal-oxygen bond distance is observed.
If the octahedra associated with $\mathrm{Mo}(1), \mathrm{Mo}(2)$ and $\mathrm{Mo}(3)$ are denoted by (1), (2) and (3) then the oxygen corner-sharing gives rise to approximately linear strings of octahedra in which the sequence is always (1)(3)(2) $(2)(3)(1)(1)(3)(2)(2) e t c$. This differs from the conventional order of sequence of sites in cubic close-packing, i.e. $(1)(3)(2)(1)(3)(2)(1)$ etc. These strings of octahedra are arranged parallel to each of three mutually perpendicular directions, and the sequence is the same in each string, no matter which direction is taken. The sodium ions are surrounded by six octahedra of the type (1) and two of the type (3).
The extent of the 'off-centre' distortion is most pronounced for $\operatorname{Mo}(1)$ and $\mathrm{Mo}(3)$ - the cations immediately surrounding the sodium ions. The displacements are in directions away from the sodium ions. Oxygen atoms of the type $O(1)$ are noticeably displaced towards the sodium ions, and in the type (3) octahedra the angle subtended at $\operatorname{Mo}(3)$ by the symmetry-related $\mathrm{O}(1)$ atoms is 66°. The distance between these oxygen atoms is $2 \cdot 23 \pm 0.04 \AA$, which is low compared with short oxygen-oxygen distances found previously, e.g. $2 \cdot 36 \pm 0 \cdot 04 \AA$ (Wadsley, 1961). The difference is probably not significant, as the variance is high. It might be concluded that the distortions in the molybdenumoxygen framework are influenced by the ordered sodium cations, but it should be noted that differences between the true structure and the average structure might seriously affect the above results.
The extent to which the molybdenum-oxygen framework can host the alkali metal depends upon the reduction of the presumably hexavalent molybdenum to

Fig.3. Depictions of the twelvefold coordination of oxygen atoms about each sodium ion in the trigonal structure. Left: The packing of octahedra around the sodium ion viewed in clinographic projection with respect to the pseudocubic axes. The oxygen atoms of the type $\mathrm{O}(1)$ are those giving the short $\mathrm{Na}-\mathrm{O}$ distances. Right: The environment of a sodium ion viewed perpendicular to (102). Octahedra of the type (1) and (3) surround the cation in the manner shown. Atoms marked with an asterisk give short $\mathrm{Na}-\mathrm{O}$ distances.

Table 4. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in the sodium molybdenum bronze
The table refers to the trigonal 'average structure'.
The first symbol denotes the atom in accordance with Table 2; the second number denotes the following symmetry transformations of the parameters of Table 2:

$$
\begin{array}{ll}
1: x, 2 x, z & 5: 2 x, x, \bar{z} \\
2: 2 \bar{x}, \bar{x}, z & 6: x, 1-x, z \\
3: \bar{x}, x, \bar{z} & 7: 1-2 x, 1-x, z \\
4: x, 2 \bar{x}, \bar{z} & 8: \bar{x}, 1-2 x, \bar{z} \\
& 9: x, \bar{x}, z
\end{array}
$$

Following the distances and angles the first number in parentheses is the estimated standard deviation, and refers to the last place of the preceding number; the second number is the number of such distances or angles.

Mo(1) octahedron.

Mo(1)9-O(1)6	1.94(2) (3)	$\mathrm{O}(1) 6-\mathrm{Mo}(1) 9-\mathrm{O}(1) 1115 \cdot 4(9)$
-O(3)9	2.15(1) (3)	$\mathrm{O}(1) 6-\mathrm{Mo}(1) 9-\mathrm{O}(3) 1 \quad 77 \cdot 6(9)$ (2)
6-O(1)1	3-28(4) (3)	$\mathrm{O}(3) 9-\mathrm{Mo}(1) 9-\mathrm{O}(3) 1 \quad 79.7(9)$
-O(3)1	2.57(2) (3)	$\mathrm{O}(1) 7-\mathrm{Mo}(1) 9-\mathrm{O}(3) 2150 \cdot 3(9)$ (1)
3)9-O(3)1	$2 \cdot 76$ (1) (3)	$\mathrm{O}(1) 6-\mathrm{O}(3) 1-\mathrm{O}(3) 9 \mathrm{96} \cdot 0(1)$
-O(1)1	2.57(2) (3)	$\mathrm{O}(1) 6-\mathrm{O}(1) 1-\mathrm{O}(3) 984.0(1)$ (4)

$\mathrm{Mo}(2)$ octahedron.

$\mathrm{Mo}(2) 5-\mathrm{O}(2) 3$	2.00(2) (3)	$\mathrm{O}(2) 3-\mathrm{Mo}(2) 5-\mathrm{O}(2) 8$	$73 \cdot 1(9)$
-O(4) 9	$1.87(1)$ (3)	$\mathrm{O}(2) 8-\mathrm{Mo}(2) 5-\mathrm{O}(4) 9$	95.0(9) (2)
(2)3-O(2)5	2-38(4) (3)	$\mathrm{O}(4) 9-\mathrm{Mo}(2) 5-\mathrm{O}(4) 1$	95.1(9) (1)
-O(4)1	$2 \cdot 86$ (2) (3)	$\mathrm{O}(2) 5-\mathrm{Mo}(2) 5-\mathrm{O}(4) 5$	65.0(9) (3)
(4)9-O(4)1	$2 \cdot 76$ (2) (3)	$\mathrm{O}(2) 3-\mathrm{O}(2) 8-\mathrm{O}(4) 9$	94.0(1) (4)
		$\mathrm{O}(2) 3-\mathrm{O}(4) 1-\mathrm{O}(4) 9$	$86 \cdot 0$ (1) (4)

$\mathrm{Mo}(3)$ octahedron.

$\mathrm{Mo}(3) 9-\mathrm{O}(1) 9$	$2 \cdot 05(2)(3)$	$\mathrm{O}(1) 9-\mathrm{Mo}(3) 9-\mathrm{O}(1) 1$	$66 \cdot 0(9)$	(1)
$-\mathrm{O}(2) 3$	$1 \cdot 90(2)$	(3)	$\mathrm{O}(1) 1-\mathrm{Mo}(3) 9-\mathrm{O}(2) 3$	$86 \cdot 5(9)$
$\mathrm{O}(1) 9-\mathrm{O}(1) 1$	$2 \cdot 23(4)$	(3)	$\mathrm{O}(2) 3-\mathrm{Mo}(3) 9-\mathrm{O}(2) 4$	$111 \cdot 1(9)$
$-\mathrm{O}(2) 4$	$2 \cdot 71(3)$	(3)	$\mathrm{O}(1) 2-\mathrm{Mo}(1) 9-\mathrm{O}(2) 5$	$146 \cdot 8(9)$
O	(1)			
$\mathrm{O}(2) 3-\mathrm{O}(2) 4$	$3 \cdot 13(4)(3)$	$\mathrm{O}(1) 9-\mathrm{O}(1) 1-\mathrm{O}(2) 3$	$99 \cdot 0(1)$	(4)
		$\mathrm{O}(1) 1-\mathrm{O}(2) 3-\mathrm{O}(2) 4$	$81 \cdot 0(1)$	(4)

Na cuboctahedron

$$
\begin{array}{rrr}
\mathrm{Na}, 9-\mathrm{O}(3) 9 & 2 \cdot 76(1) & (6) \\
-\mathrm{O}(1) 1 & 2 \cdot 27(3) & (6)
\end{array}
$$

Cation-cation

(3)	(2)
$-\mathrm{Mo}(1) 5$	4-296(2)
$5-\mathrm{Mo}(3) 9$	$3 \cdot 772$ (2)
$-\mathrm{Mo}(2) 9$	$3 \cdot 729(2)$
) $9-\mathrm{Mo}(1) 1$	$3 \cdot 761(2)$
$-\mathrm{Mo}(2) 5$	$3 \cdot 772(2)$

Table 5. Transformed coordinates of the atoms listed in Table 2

Space group C2/m. ($\left.0,0,0 ; \frac{1}{2}, \frac{1}{2}, 0\right)^{+}$

Atom	Point position	Fractional coordinates		
		x / a	y / b	z / c
Na	2(c)	zero	zero	
Mo(1)	4(i)	$\frac{2}{3}$	zero	0.3883
Mo(2)	$4(i)$	$\frac{2}{3}$	zero	0.9245
Mo(3)	$4(i)$	zero	zero	0.2327
O(41)	2(b)	zero	$\frac{1}{2}$	zero
$\mathrm{O}(31)$	2(d)	zero	$\frac{1}{2}$	$\frac{1}{2}$
$\mathrm{O}(42)$	4(e)	$\frac{1}{4}$	$\frac{1}{4}$	zero
$\mathrm{O}(32)$	4(f)	$\frac{1}{4}$	$\frac{1}{4}$	
$\mathrm{O}(21)$	4(i)	$0 \cdot 8109$	zero	0.8121
$\mathrm{O}(11)$	$4(i)$	$0 \cdot 8650$	zero	0.3558
$\mathrm{O}(22)$	$8(j)$	0.0946	0.1891	0.8121
$\mathrm{O}(12)$	8(j)	0.0675	$0 \cdot 1350$	$0 \cdot 3558$

Mo^{5+}. Up to a point then the occupancy of the sodium $l(b)$ sites depends upon the demand of charge balance imposed by the distribution of Mo^{5+} and Mo^{6+} in the $2(d)$ and 2(c) positions.

Description and discussion of the monoclinic structure

 The true unit cell of the sodium molybdenum bronze is monoclinic, with dimensions listed in Table 1. This unit cell contains twice the volume of the trigonal cell, and should therefore contain the unit $\mathrm{Na}_{1 \cdot 20} \mathrm{Mo}_{12} \mathrm{O}_{36}$. As mentioned above, the oxygen content of the unit cell has been overestimated, since it is not possible to place 17 oxygen atoms in the trigonal unit cell. However, it is possible to place 34 oxygen atoms in the true monoclinic cell using the symmetry transformations of the space-group $C 2 / m$. It is difficult to see why the structure postulated for the trigonal cell should not, in fact, be the true structure, but a reduction in the number of oxygen atoms provides a possible explanation for this and the twinning phenomenon.The transformed coordinates in the monoclinic symmetry for the atoms listed in Table 2 are shown in Table 5. The twelve oxygen atoms resulting from $6(i)$ of $P \overline{3} m 1$ are broken down to eightfold $8(j)$ and fourfold $4(i)$ positions in $C 2 / m$. Although the x and y coordinates of both atoms in $8(j)$ are independent, the values listed for them in Table 5 are obviously related viz. y is twice x. There is also a relationship between the y of the $8(j)$ position and the x of the related $4(i)$ position. The interdependence of these parameters results from the twinning, since only the average positions of the oxygen atoms have been determined. The scheme adopted for the numbering of the oxygen atoms so

Fig.4. A section, parallel to (102), through the molybdenum atoms in the trigonal structure showing the arrangement of the basal planes of one layer of octahedra. The dark circles represent molybdenum atoms, the large open circles sodium ions. The sodium ions are one half of an octahedral depth above (full circle) or below (broken circle) the section plane. Rows of octahedra of the type (1), (2) or (3) are indicated by arrows.

Table 6. Observed reflexion amplitudes and calculated structure factors
Within each group of constant h and k, the columns contain, from left to right: $1,10 F_{o}$ and $10 F_{c}$. An asterisk indicates a reflexion probably affected by extinction.

that the trigonal-monoclinic relationships are evident is as follows:
Trigonal $\overbrace{-}^{O(1)} \overbrace{\underbrace{O(2)}}^{O(3)} \overbrace{}^{O(4)}$

Monoclinic $O(11), \mathrm{O}(12) \mathrm{O}(21), \mathrm{O}(22) \widetilde{\mathrm{O}(31), \mathrm{O}(32) \mathrm{O}(41), \mathrm{O}(42)}$
The coordinates listed in Table 5 were calculated from Fourier maps in which each peak is a composite peak from the addition of three superposed single structures; the coordinates of the peak of one component lie somewhere within this composite, but not necessarily at its centre. An estimate of the spread is given by $\left(B / 8 \pi^{2}\right)^{\frac{1}{2}} \simeq 0 \cdot 15$ to $0.2 \AA$. Differences of about half this in atomic positions might be expected.

Either of the point positions $2(d)$ or $2(b)$ is void of oxygen. It seems that $2(d)$, i.e. $\mathrm{O}(31)$, is the most likely choice for the following reasons:
(a) The atom sequence along directions parallel to the two pseudo-hexagonal axes a_{1} and a_{2} will be $-\mathrm{Na}-$ $\mathrm{O}-\mathrm{Na}-\mathrm{O}-\ldots$ etc. and - Na -space- Na -space- respectively. The greater concentration of atoms or electron density along a_{1} rather than a_{2} results in $a_{1}(5 \cdot 52 \AA)$ being slightly longer than $a_{2}(5 \cdot 50 \AA)$.
(b) The sodium ions occupy ordered 2(c) positions in lines which run parallel to the unique b axis of the monoclinic cell, and are separated from each other only by $2(d)$ positions. If these were not occupied by oxygen atoms, tunnels would be formed through the framework, and a partial disordering of sodium into $2(d)$ positions would explain why the occupancy factor for the $2(c)$ position is lower than that suggested by the analytical figures.
The choice of $2(b)$ as an oxygen void does not lend itself to any plausible argument. In support of the above argument (b) it is found that tunnel structures occur extensively in ternary oxides. The potassium tungsten bronzes (Magnéli, 1949), the compound $\mathrm{Na}_{0} \cdot{ }_{3} \mathrm{WO}_{3}$ (Hägg, 1935) and the tetragonal bronze $\mathrm{Ba}_{6} \mathrm{Ti}_{2} \mathrm{Nb}_{8} \mathrm{O}_{30}$ (Stephenson, 1965) all have structures in which the oxygen octahedra are joined together by corners in a framework containing four- and five-sided tunnels which run through the structure. The hexagonal tungsten bronzes, the ternary alkali titanates and the alkalimetal vanadium bronzes (Wadsley, 1964) are further examples of structures with an open metal-oxygen framework in which tunnels persist throughout the structure in one particular direction, and hold the al-kali-metal cations in specifically ordered positions.

The monoclinic structure described above is, in effect, derived from the trigonal average 'structure' by the removal of oxygen from a close-packed structure. The $\mathrm{Mo}(1)$ atom to which the oxygen was formerly bonded will have five oxygen atoms grouped about it, which is not unlikely. The remaining molybdenum atoms in the sodium bronze each has a normal surround of six oxygens, whilst the sodium ions will have eight- or ten-fold coordination, depending on whether they are in positions $2(d)$ or $2(c)$.

A similar distortion is found in the case of $\mathrm{CaFeO}_{2.5}$ (Bertaut, Blum \& Sagnières, 1959) where complete
rows of oxygen atoms are regularly missing, and the accompanying movements of atoms remaining in the same planes impose tetrahedral coordination upon the iron atoms, whilst calcium has an eight- or nine-fold grouping, not twelvefold as in perovskite itself. Kihlborg (1963b) has discussed the structures of certain reduced molybdenum oxides, where the oxidation numbers for Mo are of the same order of magnitude as in the molybdenum bronze. In all cases there are considerable variations in bond distances, and the polyhedron can vary from a distorted octahedron to what may be considered to be virtually a tetrahedron.

The author is deply indebted to Dr A. D. Wadsley for suggesting the problem and for his continued helpful advice, to Dr Aaron Wold who supplied the crystals and to Dr B. M. Craven for helpful crystallographic consultation. The author is particularly indebted to Dr Helen Megaw for a critical reading of the manuscript and for many helpful suggestions.

References

Atoil, M. \& Rundle, R. E. (1960). J. Chem. Phys. 32, 627.
Bertaut, E. F., Blum, P. \& Sagnières, A. (1959). Acta Cryst. 12, 149.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.

Dickerson, R. E. (1959). Acta Cryst. 12, 610.
Freeman, A. J. (1962). In International Tables for X-ray Crystallography. Vol. III, Table 3.3.1A. Birmingham: Kynoch Press.
Geller, S. (1956). J. Chem. Phys. 24, 1236.
Graham, J., Stephenson, N. C., Wadsley, A. D. \& Wold, A. (1965). Nature. 206, 924.

HägG, G. Z. (1935). Z. Phys. Chem. B29, 192.
Kihlborg, L. (1963a). ark. Kemi, 21, 357.
Kihlborg, L. (1963b). Ark. Kemi, 21, 471.
Magnéli, A. (1949). Ark. Kemi, 1, 213.
Megaw, H. D. (1957a). Ferroelectricity in Crystals, p. 61. London: Methuen.
Megaw, H. D. (1957b). Ferroelectricity in Crystals, p. 126. London: Methuen.
Ondik, H. \& Smith, D. (1962). In International Tables for X-ray Crystallography. Vol. III, Table 4.1.1. Birmingham, Kynoch Press.
Rollett, J. S. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Eds. Pepinsky, Robertson and Speakman. London: Pergamon Press.
Rollett, J. S. \& Sparks, R. A. (1960). Acta Cryst. 13, 273.
Sime, J. (1961). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Eds. Pepinsky, Robertson and Speakman. London: Pergamon Press.
Stephenson, N. C. \& Wadsley, A. D. (1965). Acta Cryst. 19, 241.
Stephenson, N. C. (1965). Acta Cryst. 18, 496.
Wadsley, A. D. (1961). Acta Cryst. 14, 660.
Wadsley, A. D. (1964). In Non-Stoichiometric Compounds. Ed. L. Mandelcorn. New York: Academic Press.
Wells, M. \& Megaw, H. D. (1961). Proc. Phys. Soc. 78, 1258.

Wold, A., Kunnmann, W., Arnott, R. J. \& Ferretti, A. (1964). Inorg. Chem. 3, 545.

